منابع مشابه
Algorithmic and Domain Centralization in Distributed Constraint Optimization Problems
A class of problems known as Distributed Constraint Optimization Problems (DCOP) has become a growing research interest in computer science because of its difficulty (NP-Complete) and many real-world applications (meeting scheduling, sensor networks, military planning). In this thesis we identify two types of centralization relevant to DCOPs: algorithmic centralization, in which a DCOP algorith...
متن کاملOn the Power of Centralization in Distributed Processing
In this thesis, we propose and analyze a multi-server model that captures a performance trade-off between centralized and distributed processing. In our model, a fraction p of an available resource is deployed in a centralized manner (e.g., to serve a most-loaded station) while the remaining fraction 1− p is allocated to local servers that can only serve requests addressed specifically to their...
متن کاملPC-DPOP: A New Partial Centralization Algorithm for Distributed Optimization
Fully decentralized algorithms for distributed constraint optimization often require excessive amounts of communication when applied to complex problems. The OptAPO algorithm of [Mailler and Lesser, 2004] uses a strategy of partial centralization to mitigate this problem. We introduce PC-DPOP, a new partial centralization technique, based on the DPOP algorithm of [Petcu and Faltings, 2005]. PCD...
متن کاملLinear centralization classifier
A classification algorithm, called the Linear Centralization Classifier (LCC), is introduced. The algorithm seeks to find a transformation that best maps instances from the feature space to a space where they concentrate towards the center of their own classes, while maximimizing the distance between class centers. We formulate the classifier as a quadratic program with quadratic constraints. W...
متن کاملOn the Power of (even a little) Centralization in Distributed Processing Citation
We propose and analyze a multi-server model that captures a performance trade-off between centralized and distributed processing. In our model, a fraction p of an available resource is deployed in a centralized manner (e.g., to serve a most-loaded station) while the remaining fraction 1 − p is allocated to local servers that can only serve requests addressed specifically to their respective sta...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Lateral
سال: 2012
ISSN: 2469-4053
DOI: 10.25158/l1.1.4